Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Chinese Critical Care Medicine ; (12): 633-637, 2023.
Article in Chinese | WPRIM | ID: wpr-982645

ABSTRACT

OBJECTIVE@#To investigate whether hydrogen-rich water exerts a protective effect against cellular injury by affecting the level of autophagy after oxygen glucose deprivation/reoxygenation (OGD/R) in a mouse hippocampal neuronal cell line (HT22 cells).@*METHODS@#HT22 cells in logarithmic growth phase were cultured in vitro. Cell viability was detected by cell counting kit-8 (CCK-8) assay to find the optimal concentration of Na2S2O4. HT22 cells were divided into control group (NC group), OGD/R group (sugar-free medium+10 mmol/L Na2S2O4 treated for 90 minutes and then changed to normal medium for 4 hours) and hydrogen-rich water treatment group (HW group, sugar-free medium+10 mmol/L Na2S2O4 treated for 90 minutes and then changed to medium containing hydrogen-rich water for 4 hours). The morphology of HT22 cells was observed by inverted microscopy; cell activity was detected by CCK-8 method; cell ultrastructure was observed by transmission electron microscopy; the expression of microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 was detected by immunofluorescence; the protein expression of LC3II/I and Beclin-1, markers of cellular autophagy, was detected by Western blotting.@*RESULTS@#Inverted microscopy showed that compared with the NC group, the OGD/R group had poor cell status, swollen cytosol, visible cell lysis fragments and significantly lower cell activity [(49.1±2.7)% vs. (100.0±9.7)%, P < 0.01]; compared with the OGD/R group, the HW group had improved cell status and remarkably higher cell activity [(63.3±1.8)% vs. (49.1±2.7)%, P < 0.01]. Transmission electron microscopy showed that the neuronal nuclear membrane of cells in the OGD/R group was lysed and a higher number of autophagic lysosomes were visible compared with the NC group; compared with the OGD/R group, the neuronal damage of cells in the HW group was reduced and the number of autophagic lysosomes was notably decreased. The results of immunofluorescence assay showed that the expressions of LC3 and Beclin-1 were outstandingly enhanced in the OGD/R group compared with the NC group, and the expressions of LC3 and Beclin-1 were markedly weakened in the HW group compared with the OGD/R group. Western blotting assay showed that the expressions were prominently higher in both LC3II/I and Beclin-1 in the OGD/R group compared with the NC group (LC3II/I: 1.44±0.05 vs. 0.37±0.03, Beclin-1/β-actin: 1.00±0.02 vs. 0.64±0.01, both P < 0.01); compared with the OGD/R group, the protein expression of both LC3II/I and Beclin-1 in the HW group cells were notably lower (LC3II/I: 0.54±0.02 vs. 1.44±0.05, Beclin-1/β-actin: 0.83±0.07 vs. 1.00±0.02, both P < 0.01).@*CONCLUSIONS@#Hydrogen-rich water has a significant protective effect on OGD/R-causing HT22 cell injury, and the mechanism may be related to the inhibition of autophagy.


Subject(s)
Mice , Animals , Oxygen/metabolism , Beclin-1/pharmacology , Glucose/metabolism , Actins , Sincalide , Autophagy/physiology , Hydrogen/pharmacology , Reperfusion Injury , Apoptosis
2.
Biol. Res ; 56: 14-14, 2023. ilus, graf
Article in English | LILACS | ID: biblio-1429914

ABSTRACT

The endocannabinoid system (ECS) regulates energy metabolism, has been implicated in the pathogenesis of metabolic diseases and exerts its actions mainly through the type 1 cannabinoid receptor (CB1). Likewise, autophagy is involved in several cellular processes. It is required for the normal development of muscle mass and metabolism, and its deregulation is associated with diseases. It is known that the CB1 regulates signaling pathways that control autophagy, however, it is currently unknown whether the ECS could regulate autophagy in the skeletal muscle of obese mice. This study aimed to investigate the role of the CB1 in regulating autophagy in skeletal muscle. We found concomitant deregulation in the ECS and autophagy markers in high-fat diet-induced obesity. In obese CB1-KO mice, the autophagy-associated protein LC3 II does not accumulate when mTOR and AMPK phosphorylation levels do not change. Acute inhibition of the CB1 with JD-5037 decreased LC3 II protein accumulation and autophagic flux. Our results suggest that the CB1 regulates autophagy in the tibialis anterior skeletal muscle in both lean and obese mice.


Subject(s)
Animals , Mice , Cannabinoids/metabolism , Autophagy/physiology , Muscle, Skeletal/metabolism , Receptor, Cannabinoid, CB1/metabolism , Mice, Inbred C57BL , Mice, Obese
3.
Acta Physiologica Sinica ; (6): 392-400, 2022.
Article in Chinese | WPRIM | ID: wpr-939574

ABSTRACT

The aim of the present study was to observe the effects of Notch1 and autophagy on extracellular matrix deposition in renal tubulointerstitium of diabetes and to explore the mechanism. The mice were randomly divided into normal control group (db/m mice) and diabetes group (db/db mice). After 12 weeks of feeding, the mice were sacrificed and the corresponding biochemical indexes were measured. Rat renal tubular epithelial cells NRK52E were cultured under normal glucose (NG) and high glucose (HG) respectively, and the expression of Notch1 and LC3 proteins were detected by Western blotting. Autophagosomes in NRK52E cells with overexpressed and knockdown Notch1 under NG and HG conditions were observed by confocal microscope, and the expression changes of Notch1, Collagen-I and III protein were detected by immunofluorescence. The results showed that the Notch1 and Collagen-III expressions were increased (P < 0.01) and the LC3 expression was decreased (P < 0.05) in db/db mice compared with db/m mice. In vitro, the Notch1 was increased (P < 0.01) and the LC3 expression was decreased significantly (P < 0.01) in NRK52E cells of HG group compared with NG group. There was no significant change of Notch1 and LC3 expression between the mannitol (MA) group and the NG group. Autophagy was decreased and extracellular matrix deposition was aggravated when Notch1 was overexpressed. In contrast, autophagy was increased and extracellular matrix deposition was relieved by knockdown of Notch1 under HG conditions. In conclusion, Notch1 protein expression was increased and autophagy was reduced in renal tissue of diabetes and renal tubular epithelial cells under HG. The extracellular matrix deposition in the renal tubulointerstitium was relieved by regulating autophagy after the knockdown of Notch1.


Subject(s)
Animals , Mice , Rats , Autophagy/physiology , Diabetes Mellitus , Extracellular Matrix , Glucose/pharmacology , Kidney , Receptor, Notch1/genetics
4.
Journal of Zhejiang University. Science. B ; (12): 89-101, 2022.
Article in English | WPRIM | ID: wpr-929042

ABSTRACT

Cancer is the leading cause of death worldwide. Drugs play a pivotal role in cancer treatment, but the complex biological processes of cancer cells seriously limit the efficacy of various anticancer drugs. Autophagy, a self-degradative system that maintains cellular homeostasis, universally operates under normal and stress conditions in cancer cells. The roles of autophagy in cancer treatment are still controversial because both stimulation and inhibition of autophagy have been reported to enhance the effects of anticancer drugs. Thus, the important question arises as to whether we should try to strengthen or suppress autophagy during cancer therapy. Currently, autophagy can be divided into four main forms according to its different functions during cancer treatment: cytoprotective (cell survival), cytotoxic (cell death), cytostatic (growth arrest), and nonprotective (no contribution to cell death or survival). In addition, various cell death modes, such as apoptosis, necrosis, ferroptosis, senescence, and mitotic catastrophe, all contribute to the anticancer effects of drugs. The interaction between autophagy and these cell death modes is complex and can lead to anticancer drugs having different or even completely opposite effects on treatment. Therefore, it is important to understand the underlying contexts in which autophagy inhibition or activation will be beneficial or detrimental. That is, appropriate therapeutic strategies should be adopted in light of the different functions of autophagy. This review provides an overview of recent insights into the evolving relationship between autophagy and cancer treatment.


Subject(s)
Humans , Antineoplastic Agents/therapeutic use , Apoptosis , Autophagy/physiology , Necrosis/drug therapy , Neoplasms/therapy
5.
China Journal of Orthopaedics and Traumatology ; (12): 374-378, 2022.
Article in Chinese | WPRIM | ID: wpr-928327

ABSTRACT

As an important exercise and energy metabolism organ of the human body, the normal maintenance of skeletal muscle mass is essential for the body to perform normal physiological functions. The autophagy-lysosome (AL) pathway is a physiological or pathological mechanism that is ubiquitous in normal and diseased cells. It plays a key role in the maintaining of protein balance, removing damaged organelles, and the stability of internal environment. The smooth progress of the autophagy process needs to go through multiple steps, which are completed under the coordinated action of multiple factors. Autophagy maintains the muscle homeostasis of a healthy body by removing cell components such as damaged myofibrils and isolated cytoplasmic proteins. Autophagy could also provide the initial energy required for cell proliferation, promote muscle regeneration and remodeling after injury. At the same time, autophagy disorder is also an important cause of age-related skeletal muscle atrophy. Autophagy could affect the response of skeletal muscle to exercise, and increasing the level of basic autophagy is beneficial to improve the adaptive response of skeletal muscle to exercise. This article summarizes the role and pathways of autophagy in the maintenance of skeletal muscle quality, in order to provide effective rehabilitation strategies for clinical prevention and treatment of muscle atrophy.


Subject(s)
Humans , Autophagy/physiology , Exercise/physiology , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Signal Transduction
6.
Acta Physiologica Sinica ; (6): 309-319, 2022.
Article in Chinese | WPRIM | ID: wpr-927607

ABSTRACT

Lipophagy is a kind of selective autophagy, which can selectively identify and degrade lipid droplets and plays an important role in regulating cellular lipid metabolism and maintaining intracellular lipid homeostasis. Exercise can induce lipophagy and it is also an effective means of reducing body fat. In this review, we summarized the relationship between exercise and lipophagy in the liver, pancreas, adipose tissue, and the possible molecular mechanisms to provide a new clue for the prevention and treatment of fatty liver, obesity and other related metabolic diseases by exercise.


Subject(s)
Humans , Autophagy/physiology , Lipid Droplets/metabolism , Lipid Metabolism/physiology , Liver , Metabolic Diseases/metabolism
8.
Rev. bras. parasitol. vet ; 30(1): e017020, 2021. tab, graf
Article in English | LILACS | ID: biblio-1156227

ABSTRACT

Abstract Autophagy plays an important role in maintaining cell homeostasis through degradation of denatured proteins and other biological macromolecules. In recent years, many researchers focus on mechanism of autophagy in apicomplexan parasites, but little was known about this process in avian coccidia. In our present study. The cloning, sequencing and characterization of autophagy-related gene (Etatg8) were investigated by quantitative real-time PCR (RT-qPCR), western blotting (WB), indirect immunofluorescence assays (IFAs) and transmission electron microscopy (TEM), respectively. The results have shown 375-bp ORF of Etatg8, encoding a protein of 124 amino acids in E. tenella, the protein structure and properties are similar to other apicomplexan parasites. RT-qPCR revealed Etatg8 gene expression during four developmental stages in E. tenella, but their transcriptional levels were significantly higher at the unsporulated oocysts stage. WB and IFA showed that EtATG8 was lipidated to bind the autophagosome membrane under starvation or rapamycin conditions, and aggregated in the cytoplasm of sporozoites and merozoites, however, the process of autophagosome membrane production can be inhibited by 3-methyladenine. In conclusion, we found that E. tenella has a conserved autophagy mechanism like other apicomplexan parasites, and EtATG8 can be used as a marker for future research on autophagy targeting avian coccidia.


Resumo A autofagia desempenha um papel importante na manutenção da homeostase celular através da degradação de proteínas desnaturadas e outras macromoléculas biológicas. Nos últimos anos, muitos pesquisadores se concentraram no mecanismo da autofagia em parasitas apicomplexos, mas pouco se sabe sobre esse processo na coccidia aviária. No presente estudo, a clonagem, sequenciamento e caracterização de gene relacionado à autofagia Etatg8 foram investigados pela PCR quantitativa em tempo real (RT-qPCR), mancha ocidental (WB), ensaios indiretos de imunofluorescência (IFAs) e microscopia eletrônica de transmissão (TEM), respectivamente. Os resultados mostraram que o gene Etatg8 de E. tenella possui uma ORF de 375 bp, codificando uma proteína de 124 aminoácidos com estrutura e propriedades semelhantes à de outros apicomplexos. RT-qPCR revelou que Etatg8 é expresso durante os quatro estágios de desenvolvimento de E. tenella. Entretanto, seus níveis transcricionais foram significativamente mais elevados na fase de oocisto não esporulados. Os ensaios de manchas ocidental (WB) e de imunofluorescência (IFA) mostraram que a proteína EtATG8 foi lipidada para ligar-se à membrana do autofagossomo sob condições de deficiência nutritiva (em presença de rapamicina) e se agregar no citoplasma de esporozoítas e merozoítas. No entanto, o processo de produção de membrana do autofagossomo pode ser inibido por um inibidor de autofagia (3-meetiladeninatiladenina, 3-MA). Em conclusão, foi demonstrado que E. tenella tem um mecanismo de autofagia conservado, semelhante ao de outros parasitas apicomplexos, e que EtATG8 pode ser usado como um marcador para futuras pesquisas sobre autofagia direcionada à coccidiose aviária.


Subject(s)
Animals , Autophagy/physiology , Bird Diseases/parasitology , Chickens/parasitology , Eimeria tenella/physiology , Coccidiosis/veterinary , Autophagy-Related Protein 8 Family/chemistry , Autophagy/genetics , Bird Diseases/prevention & control , Genetic Markers/physiology , China , Polymerase Chain Reaction , Eimeria tenella/genetics , Cloning, Molecular/methods , Coccidiosis/prevention & control , Oocysts/isolation & purification , Oocysts/physiology , Sporozoites/isolation & purification , Sporozoites/physiology , Microscopy, Electron, Transmission , Merozoites/isolation & purification , Merozoites/physiology , Autophagy-Related Protein 8 Family/genetics
9.
Rev. bras. anestesiol ; 70(6): 627-634, Nov.-Dec. 2020. graf
Article in English | LILACS | ID: biblio-1155766

ABSTRACT

Abstract Background and objectives The mechanisms by which local anesthetics cause neurotoxicity are very complicated. Apoptosis and autophagy are highly coordinated mechanisms that maintain cellular homeostasis against stress. Studies have shown that autophagy activation serves as a protective mechanism in vitro. However, whether it also plays the same role in vivo is unclear. The aim of this study was to explore the role of autophagy in local anesthetic-induced neurotoxicity and to elucidate the mechanism of neurotoxicity in an intrathecally injected rat model. Methods Eighteen healthy adult male Sprague-Dawley rats were randomly divided into three groups. Before receiving an intrathecal injection of 1% bupivacaine, each rat received an intraperitoneal injection of vehicle or rapamycin (1 mg.kg-1) once a day for 3 days. The pathological changes were examined by Haematoxylin and Eosin (HE) staining. Apoptosis was analysed by TdT-mediated dUTP Nick-End Labelling (TUNEL) staining. Caspase-3, Beclin1 and LC3 expression was examined by Immunohistochemical (IHC) staining. Beclin1 and LC3 expression and the LC3-II/LC3-I ratio were detected by western blot analysis. Results After bupivacaine was injected intrathecally, pathological damage occurred in spinal cord neurons, and the levels of apoptosis and caspase-3 increased. Enhancement of autophagy with rapamycin markedly alleviated the pathological changes and decreased the levels of apoptosis and caspase-3 while increasing the expression of LC3 and Beclin1 and the ratio of LC3-II to LC3-I. Conclusions Enhancement of autophagy decreases caspase-3-dependent apoptosis and improves neuronal survivalin vivo. Activation of autophagy may be a potential therapeutic strategy for local anaesthetic-induced neurotoxicity.


Resumo Introdução e objetivos Os mecanismos de neurotoxicidade dos anestésicos locais são complexos. A apoptose e a autofagia são mecanismos altamente organizados que mantêm a homeostase celular durante o estresse. Estudos revelam que a ativação da autofagia atua como mecanismo de proteção in vitro. Não está claro se a autofagia também desempenha essa função in vivo. O objetivo deste estudo foi analisar o papel da autofagia na neurotoxicidade induzida por anestésico local e esclarecer o mecanismo dessa neurotoxicidade utilizando um modelo de injeção intratecal em ratos. Métodos Dezoito ratos Sprague‐Dawley machos adultos saudáveis foram divididos aleatoriamente em três grupos. Antes de receber a injeção intratecal de bupivacaína a 1%, cada rato recebeu injeção intraperitoneal de veículo ou rapamicina (1 mg.kg‐1) uma vez ao dia durante 3 dias. As alterações patológicas foram examinadas por coloração com Hematoxilina e Eosina (HE). A apoptose foi analisada por coloração com o método dUTP Nick‐End Labeling (TUNEL) mediado por TdT. A expressão de caspase‐3, Beclin1 e LC3 foram examinadas por coloração Imunohistoquímica (IHQ). A expressão de Beclin1 e LC3 e a razão LC3‐II/LC3‐I foram detectadas por análise de western blot. Resultados Após a injeção intratecal de bupivacaína, ocorreu lesão patológica nos neurônios da medula espinhal e os níveis de apoptose e caspase‐3 aumentaram. A ativação da autofagia causada pela rapamicina mitigou de forma expressiva as alterações patológicas e diminuiu os níveis de apoptose e caspase‐3, aumentando a expressão de LC3 e Beclin1 e a razão LC3‐II/LC3‐I. Conclusões O aumento da autofagia diminui a apoptose dependente da caspase‐3 e melhora a sobrevivência neuronal in vivo. A ativação da autofagia pode ser uma estratégia terapêutica potencial para a neurotoxicidade induzida por anestésicos locais.


Subject(s)
Animals , Male , Rats , Autophagy/drug effects , Bupivacaine/toxicity , Neurotoxicity Syndromes/prevention & control , Caspase 3/metabolism , Anesthetics, Local/toxicity , Neurons/drug effects , Spinal Cord/drug effects , Autophagy/physiology , Bupivacaine/administration & dosage , Random Allocation , Rats, Sprague-Dawley , Apoptosis/drug effects , Sirolimus/administration & dosage , In Situ Nick-End Labeling , Beclin-1/metabolism , Microtubule-Associated Proteins/metabolism , Neurons/pathology
10.
Biol. Res ; 53: 09, 2020. graf
Article in English | LILACS | ID: biblio-1100915

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is one of the most common rheumatic diseases of which clinical symptoms includes swelling, synovitis and inflammatory pain, affect patients' daily life. It was reported that non-coding RNAs play vital roles in OA. However, the regulation mechanism of ncRNA in OA pathogenesis has not been fully elucidated. METHODS: The expression of SNHG7, miR-34a-5p and SYVN1 was detected using qRT-PCR in tissues, serum and cells. The protein expression of SYVN1, PCNA, cleavage-caspase 3, beclinl and LC3 were measured using western blot. The RNA immunoprecipitation (RIP), RNA pulldown, and luciferase reporter assays were used to verify the relationship between SNHG7, miR-34a-5p and SYVN1. The MTT and flow cytometry assay was performed to detected cell proliferation and cell apoptosis respectively. RESULTS: In this study, SNHG7 and SYVN1 expression were down-regulated, but miR-34a-5p was up-regulated in OA tissues and IL-1P treated cells compared with normal tissues and chondrocyte. Functional investigation revealed that up-regulated SNHG7 or down-regulated miR-34a-5p could promote cell proliferation and inhibit cell apoptosis and autophagy in OA cells. More than that, RIP, pulldown and luciferase reporter assay was applied to determine that miR-34a-5p was a target miRNA of SNHG7 and SYVN1 was a target mRNA of miR-34-5p. Rescue experiments showed that overexpression of miR-34a reversed high expression of SNHG7-mediated suppression of apoptosis and autophagy as well as promotion of proliferation, while its knockdown inhibited cell apoptosis and autophagy and promoted cell proliferation which could be impaired by silencing SYVN1. In addition, SNHG7 regulated SYVN1 through sponging miR-34a-5p. CONCLUSION: SNHG7 sponged miR-34a-5p to affect cell proliferation, apoptosis and autophagy through targeting SYVN1 which provides a novel sight into the pathogenesis of OA.


Subject(s)
Humans , Osteoarthritis/metabolism , Autophagy/physiology , Apoptosis/physiology , MicroRNAs/metabolism , Ubiquitin-Protein Ligases/metabolism , RNA, Long Noncoding/metabolism , Osteoarthritis/genetics , Autophagy/genetics , Enzyme-Linked Immunosorbent Assay , Down-Regulation , Up-Regulation , Blotting, Western , Apoptosis/genetics , MicroRNAs/genetics , Ubiquitin-Protein Ligases/genetics , Cell Proliferation , Real-Time Polymerase Chain Reaction , RNA, Long Noncoding/genetics
11.
Braz. j. med. biol. res ; 53(4): e9220, 2020. graf
Article in English | LILACS | ID: biblio-1089355

ABSTRACT

Rab7, an important member of the Rab family, is closely related to autophagy, endocytosis, apoptosis, and tumor suppression but few studies have described its association with renal fibrosis. In the early stage, our group studied the effects of Rab7 on production and degradation of extracellular matrix in hypoxic renal tubular epithelial cells. Because cell culture in vitro is different from the environment in vivo, it is urgent to understand the effects in vivo. In our current study, we established a renal fibrosis model in Rab7-knock-in mice (prepared by CRISPR/Cas9 technology) and wild type (WT) C57BL/6 mice using unilateral ureteral obstruction (UUO). Seven and 14 days after UUO, the expression of the Rab7 protein in WT mice, as well as the autophagic activity, renal function, and the degree of renal fibrosis in WT and Rab7-knock-in mice were examined by blood biochemical assay, hematoxylin-eosin and Masson staining, immunohistochemistry, and western blotting. We found that the Rab7 expression in WT mice increased over time. Furthermore, the autophagic activity constantly increased in both groups, although it was higher in the Rab7-knock-in mice than in the WT mice at the same time point. Seven days after UUO, the degree of renal fibrosis was milder in the Rab7-knock-in mice than in the WT mice, but it became more severe 14 days after surgery. Similar results were found for renal function. Therefore, Rab7 suppressed renal fibrosis in mice initially, but eventually it aggravated fibrosis with the activation of autophagy.


Subject(s)
Animals , Male , Female , Rabbits , Autophagy/physiology , Ureteral Obstruction/complications , rab GTP-Binding Proteins/genetics , Kidney/pathology , Kidney Diseases/etiology , Fibrosis , RNA/isolation & purification , Signal Transduction , Up-Regulation , Mice, Knockout , Reverse Transcriptase Polymerase Chain Reaction , rab GTP-Binding Proteins/metabolism
13.
Biol. Res ; 52: 58, 2019. graf
Article in English | LILACS | ID: biblio-1100910

ABSTRACT

BACKGROUND: Our previous study showed that knockdown of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) attenuated myocardial apoptosis in mouse acute myocardial infarction (AMI). This study aims to explore whether MALAT1 enhanced cardiomyocyte apoptosis via autophagy regulation and the underlying mechanisms of MALAT1 regulating autophagy. METHODS: Cardiomyocytes were isolated from neonatal mice and then stimulated with hypoxia/reoxygenation (H/R) injury to mimic AMI. The autophagy level was assessed using GFP-LC3 immunofluorescence and western blot analysis of autophagy-related proteins. RNA pull-down and RNA immunoprecipitation (RIP) was performed to analyze the binding of MALAT1 and EZH2. Chromatin immunoprecipitation (ChIP) assay was performed to analyze the binding of TSC2 promoter and EZH2. The cell apoptosis was evaluated using TUNEL staining and western blot analysis of apoptosis-related proteins. RESULTS: H/R injury increased MALAT1 expression in cardiomyocytes. Furthermore, MALAT1 overexpression inhibited, whereas MALAT1 knockdown enhanced the autophagy of cardiomyocytes. Moreover, MALAT1 overexpression recruited EZH2 to TSC2 promoter regions to elevate H3K27me3 and epigenetically inhibited TSC2 transcription. Importantly, TSC2 overexpression suppressed mTOR signaling and then activated the autophagy. Further results showed that MALAT1 inhibited proliferation and enhanced apoptosis of cardiomyocytes through inhibiting TSC2 and autophagy. CONCLUSION: These findings demonstrate that the increased MALAT1 expression induced by H/R injury enhances cardiomyocyte apoptosis through autophagy inhibition by regulating TSC2-mTOR signaling.


Subject(s)
Animals , Mice , Autophagy/physiology , Apoptosis/physiology , Myocytes, Cardiac/metabolism , TOR Serine-Threonine Kinases/genetics , RNA, Long Noncoding/genetics , Tuberous Sclerosis Complex 2 Protein/genetics , Autophagy/genetics , Signal Transduction , Blotting, Western , Fluorescent Antibody Technique , Apoptosis/genetics , Reverse Transcriptase Polymerase Chain Reaction , Chromatin Immunoprecipitation , TOR Serine-Threonine Kinases/metabolism , RNA, Long Noncoding/metabolism , Tuberous Sclerosis Complex 2 Protein/metabolism
14.
Arq. neuropsiquiatr ; 76(12): 831-839, Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-983856

ABSTRACT

ABSTRACT Considering aging as a phenomenon in which there is a decline in essential processes for cell survival, we investigated the autophagic and proteasome pathways in three different groups: young, older and oldest old male adults. The expression profile of autophagic pathway-related genes was carried out in peripheral blood, and the proteasome quantification was performed in plasma. No significant changes were found in plasma proteasome concentrations or in correlations between proteasome concentrations and ages. However, some autophagy- and/or apoptosis-related genes were differentially expressed. In addition, the network and enrichment analysis showed an interaction between four of the five differentially expressed genes and an association of these genes with the transcriptional process. Considering that the oldest old individuals maintained both the expression of genes linked to the autophagic machinery, and the proteasome levels, when compared with the older group, we concluded that these factors could be considered crucial for successful aging.


RESUMO Considerando o envelhecimento como um fenômeno em que há um declínio nos processos essenciais a sobrevivência celular, investigamos as vias autofágica e proteassômica em três grupos: jovens, idosos e longevos. O perfil de expressão dos genes relacionados à via autofágica foi analisado em sangue periférico, e a quantificação do proteassoma realizada em plasma. Não foram encontradas alterações significativas nas concentrações plasmáticas de proteassoma ou na correlação entre as concentrações de proteassoma e as idades. No entanto, alguns genes relacionados a autofagia e / ou apoptose foram expressos diferencialmente. Além disso, as análises de rede e de enriquecimento mostraram uma interação entre quatro dos cinco genes diferencialmente expressos e a associação desses ao processo transcricional. Considerando que os indivíduos longevos mantiveram tanto a expressão de genes ligados à maquinaria autofágica, quanto os níveis de proteassoma quando comparados aos idosos, concluímos que esses fatores poderiam ser considerados cruciais para o envelhecimento bem-sucedido.


Subject(s)
Humans , Male , Adult , Middle Aged , Aged , Aged, 80 and over , Young Adult , Autophagy/genetics , Aging/genetics , Aging/metabolism , Longevity/genetics , Autophagy/physiology , Brazil , Gene Expression Regulation , Apoptosis/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Longevity/physiology
15.
Acta cir. bras ; 33(3): 223-230, Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-886270

ABSTRACT

Abstract Purpose: To investigate the impact of different hypoxia reoxygenation (HR) times on autophagy of rat cardiomyocytes (H9C2). Methods: Rat cardiomyocytes were randomly divided into normal control group (group A), hypoxia group (group B), 2 h HR group (group C), 12 h HR group (group D), and 24 h HR group (group E). LC3 II/LC3 I was determined via western blotting, and cell viabilities of cardiomyocytes were measured using methyl thiazolyl tetrazolium (MTT) assay. Results: Cell viabilities in HR model groups were significantly lower than those of group A (P<0.05). LC3 II/LC3 I levels in groups B to D were significantly higher than those of group A (P<0.05), and group D showed the highest LC3 II/LC3 I levels. Cell viabilities in groups B to D were significantly lower than those of group A (P<0.05), with group D showing the lowest cell viabilities (P<0.05). Conclusions: Hypoxia can induce autophagy in rat cardiomyocytes, which can be further activated by reoxygenation; most notable after 12 h. Hypoxia-induced cell injury can be aggravated by reoxygenation. The lowest cell viability was observed at 12 h after reoxygenation; however, cell viability can be recovered after 24 h.


Subject(s)
Animals , Rats , Autophagy/physiology , Cell Hypoxia/physiology , Cell Survival/physiology , Apoptosis/physiology , Microtubule-Associated Proteins/physiology , Time Factors , Random Allocation , Cell Line , Myocytes, Cardiac/cytology
16.
São Paulo; s.n; s.n; 2018. 100 p. graf, tab, ilus.
Thesis in Portuguese | LILACS | ID: biblio-999242

ABSTRACT

O diabetes mellitus tipo 1 é uma doença metabólica, caracterizada pela desregulação glicêmica, que ocorre devido a um ataque autoimune. A insulinoterapia é o tratamento clássico para o DM1. Contudo, alguns pacientes que apresentam essa doença não respondem de forma eficiente a este tratamento e apresentam episódios frequentes de hipoglicemia severa e despercebida (pacientes hiperlábeis). Essas complicações comprometem de forma significativa a qualidade de vida dessas pessoas. O transplante de ilhotas é uma importante alternativa para o tratamento de pacientes hiperlábeis com DM1. No entanto, essa terapia apresenta restrições como a necessidade de mais de um doador por transplante e significativa morte das ilhotas devido ao estresse provocado pelo procedimento de isolamento, além da morte promovida pelo sistema imune do paciente nos primeiros momentos pós-transplante. A autofagia é um mecanismo de reciclagem de componentes citoplasmáticos que é fundamental para a homeostase celular. Em condições de estresse, este mecanismo é ativado acima do seu nível basal, promovendo a degradação de agregados proteicos e organelas defeituosas, evitando assim, danos celulares que comprometam a viabilidade da célula. Trabalhos realizados por nosso grupo têm mostrado a citoproteção que PRL promove em células-beta, reduzindo a apoptose induzida por citocinas pró-inflamatórias. Também demonstramos o papel essencial de HSPB1 na inibição de apoptose induzida por PRL após o tratamento com citocinas. Além disso, resultados recentes de nosso laboratório mostraram um aumento nos níveis de autofagia em células-beta após sua exposição a citocinas, bem como uma restauração a níveis normais na presença de PRL. Visando um melhor entendimento do papel da PRL na modulação da autofagia em células-beta, o objetivo desse projeto foi estudar se HSPB1 também é essencial no mecanismo de regulação da autofagia induzido por PRL.Para tal, fizemos experimentos em modelos de células-beta MIN6, MIN6 silenciadas para HSPB1 (MIN6-shHSPB1) e MIN6 com sequencia short hairpin aleatória (MIN6- SsC), medindo a morte celular através de ensaios de viabilidade, e ensaios de western blot para avaliar os níveis de marcadores de autofagia e fluxo autofágico (degradação de autofagossomos), tratando as células com citocinas, prolactina e indutores ou inibidores de autofagia. Os resultados mostraram que a modulação da autofagia ocasionada pela prolactina em células-beta se dá, em parte, através de HSPB1. O tratamento com prolactina foi capaz de inibir a morte celular induzida por citocinas, mesmo na presença de cloroquina, um bloqueador de autofagia, o que nos levou a concluir que a autofagia não é uma via envolvida na citoproteção de células beta induzida por PRL. Os resultados gerados nesse estudo contribuíram para uma melhor compreensão dos eventos moleculares induzidos por PRL em células-beta, e poderão permitir a inferência de novas abordagens que melhorem a citoproteção, cultura e transplante dessas células em pacientes com diabetes tipo 1


Type 1 diabetes mellitus is a metabolic disease characterized by glycemic dysregulation, which occurs due to an autoimmune destruction of beta-cells. Insulin therapy is the gold standard treatment for DM1. However, some DM1 patients do not respond efficiently to this treatment and suffer frequent episodes of severe hypoglycemia unawareness. Since this complication jeopardizes the quality of life of these people, Islet transplantation is a therapeutic alternative indicated to treat these patients. However, besides the lack of enough organ donors, the loss of beta cells during both the isolation as well as the infusion of islets into the recipient induce a great estresse and thus a significant cell death is one of the drawbacks of this procedure. Autophagy is a mechanism of recycling cytoplasmic components and is essential for cellular homeostasis. Under estresse conditions, this mechanism is activated above basal levels, promoting the degradation of protein aggregates and defective organelles, thus avoiding cell damage that could compromise cell viability. Studies carried out by our group have shown not only that PRL promotes cytoprotection in beta-cells, reducing pro-inflammatory cytokines-induced apoptosis, but also that HSPB1 plays an essential role in this inhibition of apoptosis mediated by PRL after treatment with cytokines. Moreover, recent results from our laboratory showed an increase in autophagy levels in beta-cells after exposure to cytokines, as well as a restauration to normal levels in the presence of PRL. In order to better understand the role of PRL in the modulation of autophagy in these cells, the aim of this project is to study whether HSPB1 is also essential in the mechanism of autophagy regulation induced by PRL. Using MIN6 beta cell models where HSPB1 was silenced (MIN6-shHSPB1) or not (MIN6-SsC), we studied cell death by viability assays. Moreover, western blot assays were performed in order to assess levels of autophagy and autophagic flux markers in the cells.Our results showed that HSPB1 in one of the mediators of PRL-induced modulation of autophagy. Nevertheless, since hormonal treatment was still able to inhibit cytokinesinduced cell death even in the presence of chloroquin, an autophagy blocker, we conclude that autophagy is not a signaling pathway involved in PRl-induced beta-cell cytoprotection. Altogether, the results shown in this study may help to increase the knowledge of the molecular events induced by PRL in beta-cells, and may allow to infer new approaches to improve cytoprotection, culture and transplantation of these cells into type 1 diabetic patients


Subject(s)
Autophagy/physiology , HSP27 Heat-Shock Proteins/analysis , Prolactin/administration & dosage , Cytokines/administration & dosage , Diabetes Mellitus, Type 1/pathology
17.
Clinics ; 73(supl.1): e814s, 2018. tab, graf
Article in English | LILACS | ID: biblio-974944

ABSTRACT

Cancer is a leading cause of death worldwide, and its incidence is continually increasing. Although anticancer therapy has improved significantly, it still has limited efficacy for tumor eradication and is highly toxic to healthy cells. Thus, novel therapeutic strategies to improve chemotherapy, radiotherapy and targeted therapy are an important goal in cancer research. Macroautophagy (herein referred to as autophagy) is a conserved lysosomal degradation pathway for the intracellular recycling of macromolecules and clearance of damaged organelles and misfolded proteins to ensure cellular homeostasis. Dysfunctional autophagy contributes to many diseases, including cancer. Autophagy can suppress or promote tumors depending on the developmental stage and tumor type, and modulating autophagy for cancer treatment is an interesting therapeutic approach currently under intense investigation. Nutritional restriction is a promising protocol to modulate autophagy and enhance the efficacy of anticancer therapies while protecting normal cells. Here, the description and role of autophagy in tumorigenesis will be summarized. Moreover, the possibility of using fasting as an adjuvant therapy for cancer treatment, as well as the molecular mechanisms underlying this approach, will be presented.


Subject(s)
Humans , Autophagy/physiology , Fasting/physiology , Neoplasms/physiopathology , Neoplasms/therapy , Autophagy/drug effects , Autophagy/radiation effects , Antineoplastic Protocols , Neoplasms/metabolism , Antineoplastic Agents/pharmacology
18.
Biol. Res ; 51: 22, 2018. graf
Article in English | LILACS | ID: biblio-950906

ABSTRACT

BACKGROUND: Our study aimed to investigate the roles of autophagy against high glucose induced response in retinal pigment epithelium (ARPE-19 cells). METHODS: The morphological changes and reactive oxygen species (ROS) generation in ARPE-19 cells under high glucose treatment were respectively detected using the transmission electron microscopy and flow cytometry. The expression levels of Parkin, PINK1, BNIP3L, LC3-I and LC3-II in ARPE-19 cells received high glucose treatment were measured by western blot after pretreatment of carbonyl cyanide m-chlorophenylhydrazone (CCCP), 3-methyladenine (3-MA), N-acetyl cysteine (NAC) or cyclosporin A (CsA) followed by high glucose treatment. RESULTS: ARPE-19 cells subjected to high glucose stress showed an obvious reduction in the LC3-I expression and significant increase in the number of autophagosomes, in the intracellular ROS level, and in the expression levels of Parkin, PINK1, BNIP3L and LC3-II (p < 0.05). Pretreatment with CCCP significantly reduced the LC3-I expression and increased the expression levels of Parkin, PINK1, BNIP3L and LC3-II (p < 0.05). ARPE-19 cells pretreated with CsA under high glucose stress showed markedly down-regulated expressions of Parkin, PINK1 and BNIP3L compared with the cells treated with high glucose (p < 0.05). Pretreatment of ARPE-19 cells with NAC or 3-MA under high glucose stress resulted in a marked reduction in the expression levels of PINK1, BNIP3L and LC3-II (p < 0.05). Meanwhile, the expression level of Parkin in the ARPE-19 cells pretreated with NAC under high glucose stress was comparable with that in the control cells. CONCLUSION: Autophagy might have protective roles against high glucose induced injury in ARPE19 cells via regulating PINK1/Parkin pathway and BNIP3L.


Subject(s)
Humans , Protein Kinases/drug effects , Autophagy/drug effects , Proto-Oncogene Proteins/drug effects , Tumor Suppressor Proteins/drug effects , Ubiquitin-Protein Ligases/drug effects , Retinal Pigment Epithelium/drug effects , Glucose/pharmacology , Membrane Proteins/drug effects , Protein Kinases/metabolism , Autophagy/physiology , Signal Transduction/physiology , Cell Line , Proto-Oncogene Proteins/metabolism , Reactive Oxygen Species/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Microscopy, Electron, Transmission , Retinal Pigment Epithelium/cytology , Flow Cytometry , Membrane Proteins/metabolism
19.
Medicina (B.Aires) ; 77(4): 314-320, ago. 2017. ilus
Article in Spanish | LILACS | ID: biblio-894485

ABSTRACT

La autofagia es un proceso de reciclado de partes de la célula. Como se describe en esta revisión, ocurre naturalmente preservando a las células de la acumulación de toxinas, moléculas y organelas dañadas y además permite los procesos de desarrollo y diferenciación de los tejidos. En el transcurso de la autofagia, el procesamiento de los sustratos a reciclar genera ATP, lo que constituye una fuente alternativa de energía en situaciones de estrés. En este sentido, bajo condiciones hostiles como hipoxia o falta de nutrientes, el proceso puede dispararse de modo exacerbado llevando a la muerte celular. Algunas alteraciones en su funcionamiento pueden involucrar el desarrollo de diversas patologías, tales como el daño hepático, el cáncer y las enfermedades neurodegenerativas.


Autophagy is a process of recycling parts of the cell. As described in this review, it occurs naturally in order to preserve cells from the accumulation of toxins, damaged molecules and organelles, and to allow processes of tissue development and differentiation. In the course of autophagy, the processing of the substrates to be recycled generates ATP, thus providing an alternative source of energy in stress situations. In this sense, under hostile conditions such as hypoxia or lack of nutrients, the autophagy process can be exacerbated leading to cell death. Some alterations in its functioning may involve the development of various pathologies, including liver damage, cancer and neurodegenerative diseases.


Subject(s)
Humans , Autophagy/physiology , Cell Differentiation/physiology , Cell Survival/physiology , Neurodegenerative Diseases/pathology , Energy Metabolism/physiology , Neoplasms/pathology , Cell Hypoxia , Adenosine Triphosphate/metabolism , Neurodegenerative Diseases/physiopathology , Neoplasms/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL